Max Nuyens and Casey Duckering
¢s150-bp and ¢s150-bo

Team 1

12/12/14

CS150 Project Final Report

Project Functional Description and Design Requirements:

The objective of our project was to implement a functional three stage pipelined RISC-V CPU
running 32-bit RISC-V instruction set at 100 Mhz, with two way set associative write-back
instruction and data caching. The memory architecture was required to include a cache
bypass and memory mapped IO for UART, cycle and instruction counters, and graphics
acceleration. The graphics accelerator needed to have the capability to draw lines and fill a
screen with a solid color. We expanded this feature to add the ability to draw circles, open

and filled, on the screen. A sample image is attached (Appendix: Figure 3).

High-level organization:

Our design is split up into three main stages. We’ve provided a block diagram of our data
path (Appendix: Figure 2) as well as the following descriptions of each stage.

Stage 1:

In stage one we receive the instruction from memory, analyze it, and generate control signals
for the rest of the design. We also access the register file to get any necessary values, and
handle data forwarding from stage 3 (two instructions away).

This uses the modules: Control, Stripper, InmDecode, and RegFile.

Stage 2:

In stage two we execute arithmetic with the ALU, handle branching (and jumping) logic, and
input to the memory mapped 10. Data forwarding from the previous instruction is received
from stage 3 at the beginning of this stage.

This uses the modules: Memorylnterface, ALU, and Branch.

Stage 3:

In stage three, we receive the output from the memory or memory mapped |10 and write to
registers from either the ALU, memory, or the PC+4 according to the control signal. The data
output of the stage is sent back to the first stage for data forwarding. If data forwarding from
memory, a noop is inserted to reduce the critical path.

This uses the modules: Memorylnterface, and RegFile.

PC Logic:

The PC is normally incremented by 4 every cycle. On a stall, the PC value is held the same
and on reset, the PC is set to 0x40000000 (the start of BIOS memory). On branches, it is set
to the address computed by the ALU and there is additional logic to stall the PC when noops

are inserted when data forwarding from memory.

Detailed Description of Sub-pieces:

Control:

Takes in fields of the instruction from the Stripper and outputs all control signals based on
only the current instruction except address based control signals used in MemorylInterface

because the memory address isn’t known in the first stage.

Stripper:

Takes in an instruction and splits it into fields for opcode, rs1, etc. for other modules to use.
Also outputs the instruction type based on the opcode.

ImmDecode:

Takes in the current instruction and instruction type, and decodes the immediate of the
current instruction sign extended to 32 bits. The immediate is stored in different bits for the
different instruction types R, I, S, SB, U, and UJ.

RegFile:

Maintains the values of 32 32-bit registers. Stores values into a register synchronously and
reads two values at a time asynchronously and always outputs zero for register zero.

ALU:

Takes in two 32-bit inputs and an operation type and then computes the result.

Branch:

Takes in two 32-bit values to compare, and the type of comparison to do (registered from
Control) and outputs whether to branch or not. Always outputs true if the type is a jump.

MemoryInterface:

Takes in an address, and a read and write enable, and based on the top nibble of the address
either accesses memory through different caches, or access peripherals of the cpu, based on

the tables below.

Updated Memory Address Partitions

Address[31:28] Address Type Device Access Notes
4’b00x 1 Data Data Cache Read/Write
4’b0001 PC Instruction Cache Read-only
4’b001x Data Instruction Cache Write-Only Only if PC[30]
4’b0100 PC BIOS memory Read-only
4’b0100 Data BIOS memory Read-only
4’b0100 Data Cache Bypass Write-only
4’b1000 Data I/0 Read/Write

Memory Map
Address Function Access Data Encoding
32’h80000000 UART transmitter control Read {30’b0, DataOutValid, DataInReady }
32’h80000004 UART receiver data Read {24°b0, DataOut}
32’h80000008 UART transmitter data Write {24°b0, Dataln}
32’h80000010 Cycle counter Read Total number of cycles
32’h80000014 Stall counter Read Number of cycles stalled
32’h80000018 Reset counters to 0 Write N/A
32’h8000001¢c Filler Control Read {31°b0, FillerReady}
32’h80000020 Filler Color Write {8’b0, Color}
32’h80000024 Line Control Read {31’b0, LE_ready}
32’h80000028 Line Color Write {8’b0, Color}
32’h80000030 Line x0 Write {22’b0, Point }
32°h80000034 Line y0 Write {22°b0, Point}
32’h80000038 Line x1 Write {22’b0, Point }
32’h8000003c Line yl Write {22’b0, Point }
32’h80000040 Triggering Line x0 Write {22°b0, Point}
32’h80000044 Triggering Line y0 Write {22’b0, Point}
32’h80000048 Triggering Line x1 Write {22’b0, Point}
32’h8000004¢ Triggering Line y1 Write {22’b0, Point}

Memorylnterface also takes in the PC and outputs instructions using the instruction cache. It
holds the outputs of the caches if they output while anything else is stalling, so at the end of

the stall, all values are ready.

Status and Results:

Everything (2 way set associative write back cache, graphics accelerator, all instructions in
the spec, UART, counters, and cache bypass) works at 100 Mhz. We fail two timing
constraints, but they don’t affect the ability of our cpu to run correctly at speed. We believe
this is because the longest critical path is only used during a stall, so it actually has two cycles
to stabilize.

Slice LUTs: 8162

LUT Flip Flop Pairs: 10095

For your convenience we’ve attached a copy of the report main screen (Appendix: Figure 1),

in case we forgot any number you wished to see.

Conclusions:

This project was a challenge, but as predicted, the challenge was mostly in debugging the
mistakes we made rather than in writing the code in the first place. Hence most of the lessons
we learned were about how to better debug Verilog and other similar languages. Bugs are
very often in the connections between pieces as opposed in the individual modules, so it
would have been better if we’'d checked these connections carefully in the beginning of our
debugging process as opposed to after a week or two. Verilog is very bad a throwing errors
for typos, and we should have created something that would show us only the errors that we

had caused.

Appendix:

Configuration File: \ml|505top.xreport | Parser Errors:
Module Name: ml505top Implementation State: Programming File Generated
Target Device: 5vix110tff1136-1 = Errors: No Errors
Product Version: ISE 14 6 « Warnings: 1765 Warnings (1765 new)
Design Goal: data unavailable « Routing Results: All Signals Completely Routed
Design Strategy: data unavailable * Timing Constraints: | X 2 Failing Constraints
Environment: System Settings « Final Timing Score: | 2063665
[owviustetemmsy | @
Slice Logic Utilization Used | Available | Utilization| Note(s)
Number of Slice Registers 5,569 69,120 8%
Number used as Flip Flops 5,569
Number of Slice LUTs 8,162 69,120 11%
Number used as logic 8,113 69,120 11%
Number using 06 output only 7,749
Number using 05 output only 171
Number using 05 and 06 193
Number used as Memary s 17,920 1%
Number used as Shift Register s
Number using 06 output only 35
Number used as exclusive route-thru 14
Number of route-thrus 183
Number using 06 output only 180
Number using 05 output only 2
Number using 05 and 06 1
Number of occupied Slices 3,543 17,280 20%
Number of LUT Flip Flop pairs used 10,095
Number with an unused Flip Flop 4,526 10,095 44%
Number with an unused LUT 1,933 10,095 19%
Number of fully used LUT-FF pairs 3,636 10,095 36%
Number of unigue control sets 454
Number of slice register sites lost 956 69,120 1%
to control set restrictions
Number of bonded |08s 146 640 22%
Number of LOCed 10Bs 146 146 100%
I0B Flip Flops 279
Number of BlockRAM/FIFO 42 148 28%
Number using BlockRAM only 30
Number using FIFO anly 12
Number of 36k BlockRAM used 27
Number of 18k BlockRAM used 5
Number of 36k FIFO used 12
Total Mermory used (KB) 1,494 5,328 28%
Number of BUFG/BUFGCTRLs B 32 18%
Number used as BUFGs 6
Number of IDELAYCTRLS 3 22 13%
Number of BUFIOs 8 80 10%
Number of PLL_ADVs 1 B 16%
Average Fanout of Non-Clock Nets 4.02

Figure 1: Screen Shot of ‘make report’ Front Page

Stage 1 Stage 2 Stage 3

Data forward from o instructions ahead PC Logic

stripper | funct3_1

Branch Decision

Select Reg File input

4 peToAlu_1
branchtype_1 Pipeline]register
|-.
Pipelinefregister

—.(
SvnmronouslMemor\d Read /Write
| -
alu_out_2 dataOut_3

memfinterface
lrsZOuU-\ct_Z }-I I
T
— :readMemS\ze_Bl

wea_2

clk —

:a\u_cut_BI

.
Address of inst_1
)

regfile

{ir’ISLlI

Note: Wires labeled xxxx_1, xxx_2, and xxx_3 are pipelined signals from each of the corresponding stages

Figure 2: Block Diagram of our Datapath

e ——

Figure 3: Extra Credit Hardware Circle Acceleration

